
a discontinuity. After the transition, A c takes on the previous value, while the frequency 
of the self-oscillations remains equal to 4.36"10 -2 sec -I. 

NOTATION 

~, angular frequency; k, wave number; ~, thermal diffusivity; TT, thermostat tempera- 
ture; Tc, transition temperature; T 0, the difference between the transition temperature and 
the thermostat temperature; T(x), the deviation of the temperature at point x from TT; x, 
coordinate; t, real time; T, normalized time; ~, thermal conductivity; p, density; u I and 
u2, voltages; P, power; S, area; q, specific heat of transition; u0, reference voltage; ~, 
thermo-electromotive force coefficient; o, Heaviside function; x0, coordinate of the thermo- 
couple; x B, coordinate of the phase boundary (stationary component); XB, the oscillating 
component of the phase boundary coordinate; e, the small deviations of the parameters from 
their critical values; K, the controller gain coefficient; ~, the dimensionless amplitude 
of the first harmonic; c n and bn, the Lyapunov coefficients; O n and En, the n-th harmonics 
of the temperatures of phases I and II, respectively; 6, thickness of the sample; Xn, the 
n-th harmonic of XB; A, the generalized gain coefficient; B, the stationary temperature 
gradient; V(x) and W(x), the spatial parts of the first harmonic of the temperatures in 
phases I and II; • ~j, ~j, s ~j, and D are auxiliary parameters. 
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GENERALIZED STEFAN PROBLEM 

A. A. Gukhman, A. A. Zaitsev, and B. P. Kamovnikov UDC 621.56/57 

A generalized Stefan problem is considered in which volume heat release during 
the freezing-out of bound moisture is taken into account. It is shown that 
the appearance of additional criteria does not prevent obtaining a self-similar 
solution. 

A whole series of problems associated with a change in the aggregate state of a materi- 
al (freezing, drying, heating, sublimation, and similar problems) can be solved in terms 
of Stefan model approximations. In accordance with this model the phase separation boundary 
moves from the periphery into the depth of an object depending on withdrawal of heat from 
its surface (or the addition of heat to it). It is assumed here that the liberation or ab- 
sorption of heating during a phase change takes place in an infinitely thin region of the 
material, namely, on a moving "front" (the phase separation boundary). 

Experimental verification of the "frontal" theory yields satisfactory results in those 
cases involving moisture found in a free state. The situation deteriorates substantially 
when it becomes necessary to take the effect of bound moisture into account. We consider 
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Fig. i. Dependence of volumetric moisture con- 
tent of material on the temperature (Ten d , end 
temperature of process of freezing, determined 
by industrial regulation). 

this question in more detail using as an example the freezing of moist bodies. 

As is well known [i-3], in the process of freezing one can distinguish three character- 
istic periods: a preliminary cooling of the product, a natural chilling (formation and de- 
velopment of a zone of crystallization), and a terminal freezing. The cooling period con- 
tinues up to the time that the surface of the object attains a cryoscopic temperature. In 
the second period the temperature in the chilled zone decreases and in this zone a freezing- 
out of the remaining moisture takes place. This period terminates when the crystallization 
"front" reaches the thermal center of the object. In the last stage of the process (up to 
the time that the material attains a mean-volume temperature level determined through indus- 
trial regulation) there is a continuation of the process of freezing-out of the bound mois- 
ture. 

In the solution of accurately formulated boundary-value problems of this kind the appli- 
cation of various forms of generalized analysis (in particular, the theory of similarity) 
often proves to be useful. However, from the standpoint of this method, it is usually only 
the first and second periods that are considered. The third period is either generally ig- 
nored [4, 5] or use is made of simplified models [i, 2] or empirical formulations. In this 
regard, at the second stage the effect of freezing-out the remaining mositure and the as- 
sociated volume heat release are not infrequently neglected. Moreover, in the directed cal- 
culations for effecting a thermal balance it is assumed that the energy consumption of the 
freezing machinery is completely determined by expenditures of energy in the proper chilling 
stage and that similar expenditures in the final freezing period are immaterial. As for 
the very structure of the criterial relationships, it proves to be different for each stage 
of the freezing process. In this connection it is expedient to obtain a single criterial 
system for all the periods of this process, taking into account volume heat release owing 
to the freezing-out of bound moisture. 

The general volumetric moisture content of a material (mass of moisture per unit vol- 
ume) can be represented as a sum of two terms corresponding, respectively, to the volumetric 
content of the free moisture and of the bound moisture: 

? = ?free @ ~bound. (i) 

Here the second term accounts only for the portion of the moisture (comparatively weakly 
bound with the material) which can take part in phase transitions. Hydrated water is gener- 
ally excluded from consideration since it does not take part in phase transitions. We as- 
sume that crystallization of the free moisture occurs at the moving "front" and that of the 
bound moisture occurs within the volume of the frozen material depending on the lowering 
of its temperature below the cryoscopic point. 

Without considering the mechanism of interaction of weakly bound water with the materi- 
al, we use only the well-known fact that with a lowering of the temperature the quantity 
7bound decreases monotonically. We now attempt to approximate this behavior by the most 
rational method. Since in what follows we are presumed to apply a generalized analysis to 
obtain the most universal form of the solution, containing possibly the fewest number of 
criteria, the approximating function must also include a minimum number of parameters. This 
requirement calls for a monomial power term of the form 

~'bound. = A (T - -  T')~ .  ( 2 )  

Here A, T', and ~ are macroscopic parameters of the frozen material. 
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It should be noted that this in no way signifies that function (2) approximates the 
sought-for behavior over the whole interval T' - Tcry o. Of practical interest is the signifi- 
cantly narrower range of variation of the temperatures (on the order of 15-25 K) close to 
Tcryo: Beyond the limits of this temperature range the temperature curve can go in a com- 
pletely arbitrary way. To emphasize this situation, in the figure its course in the corre- 
sponding region is indicated by a dashed curve. It is known that the bound moisture can 
be observed even for very low temperatures (below T'). Therefore, the value T' must be re- 
garded as a conditional characteristic not directly connected with the limiting temperature 
of the remaining moisture present. 

The local constituent of the volumetric density of the thermal flow corresponding to 
liberation of heat owing to the freezing-out of bound moisture can now be represented in 
the following way: 

dQv = r O~bound r dybound 3T 
bouna ~-~ ~ %ound d r  - ~ - T  ' (3) 

Taking relation (2) into account, we can rewrite Eq. (3) in the form 

dQ V = ~A%oun~T _ T,)~_~ O..T_T ( 4 )  
aT ' 

and the Fourier equation for the frozen material in the form 

aT ~Arb~ ( T  T') ~-1 aT 
- -  = alvzT - -  ( 5 )  
Ox c~9~ hT 

The minus sign before the second term on the right side of Eq. (5) stipulates that crystal- 
lization is an exothermic process. 

Similar considerations, to an equal degree, are also valid for the drying process (ther- 
mal, atmospheric, sublimational). Actually, this process can also be divided into three 
characteristic periods: heating of an object, formation and motion of a dehydrated zone, 
and completion of drying. Of course, instead of the heat of crystallization, here we must 
consider heat of vaporization and, during sublimational drying, the heat of sublimation. 

From the mathematical point of view all these phenomena are completely identical and 
lead to the generalized Stefan model. In addition, it whould be noted that here the Stefan 
problem is a generalized problem, not only and not so much because in its solution use is 
made of the apparatus of generalized analysis. Of much more importance is the fact that 
the necessity for taking into account the effect on the process of the presence of bound 
moisture requires formulation of the problem in its most general form. The classical Stefan 
problem corresponds to a particular case of it (for 7bound ~ 0). 

We consider the process of freezing of an unbounded plate of moist material of thick- 
ness 26, which at time T = 0 is present in the medium with temperature T m. The initial tem- 
perature of the plate is everywhere the same and equal to T O (T o > Tm). The coefficient of 
heat transfer from the surface of the plate to the cooling medium, as well as the thermo- 
physical parameters of the material in both zones (frozen and unfrozen), are assumed to be 
constant. If we introduce the temperature difference 

= T - -  Tin, (6 )  

t h e n  t h e  g e n e r a l i z e d  S t e f a n  p rob lem can be r e p r e s e n t e d  by t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s  
and bounda ry  c o n d i t i o n s :  

a# O~~ - ,,6A%,~,,',,r~ t%')~-, a~ 
= a l  . . . .  ; ( 7 )  

0T 0X ~ Clp 1 OT 

a~, a2o ( 8 ) 
O~ = a2 ox~ ; 

'%1 - ~ x  ' 

\Ox ; '  

(9) 
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08 
- -  0 f o r  X = 0 ;  

Ox 

8 =  ~0 for T----- O; 

(io) 

(11) 

~ l [ - T - - | l - - ~ ' [ - - 2 - - | ~ = r ' f r e e 0 , \ O ,  / \ OX / .  ' ~ = ~ c r y o f ~  X ~ .  ( t 2 )  

The system (7)-(12) differs from its analog for the classical Stefan model [6] by additional 
terms on the right side of Eq. (7), and also by the fact that in condition (12) on the moving 
boundary, instead of the total moisture content 7 of the material, we have the quantity 7free 
of the free moisture. To the stages of proper freezing and terminal freezing there corre- 
sponds a first alternate version of relation (9), and to the period of preliminary cooling 
there corresponds a second. Of course, for the cooling and terminal freezing stages one 
must confine oneself only to the corresponding part of Eqs. (7)-(12). 

Thus, as an example of the application of generalized analysis the system of equations 
(7)-(12) completely encompasses all periods of the freezing process and makes it possible 
to obtain a criterial relation valid for all stages of this process. It should be noted, 
however, that for each of these periods we have a very rational system of similarity cri- 
teria and reference scale for the variables, obtainable from most general considerations 
through corresponding simplifications, some of which we consider below: 

If we take as reference scales 

- -  = a l  9 

8~ 
l ,  

8 ,  = t ~  b o u n d * _  ; 8 ,  = (13) 

ClPiT, 

t%, 8 ,  . (14) 
- -  t22 2 ' 

t o ~ 

8 ,  . ~o, : h ~ - . ,  < = 8; ( 1 5 )  

8 ,  = 60; ( 1 6 )  

= )~o.~, I ,  ,, 
" l ,  = r f r e e ~ ,  ; ~ * = 6 c r y ~  ( 1 7 )  

6 2 
8 .  = 80; l .  = 6; ~ .  - , ( 1 8 )  

we o b t a i n ,  f r o m  t h e  t e n  s c a l i n g  e q u a t i o n s ,  s e v e n  c r i t e r i a  o f  s i m i l a r i t y  ( f o u r  o f  t h e i r  num- 
b e r  b e i n g  p a r a m e t r i c ) :  

a l  �9 K 1 ;  @' . ~ x r y o ;  B i - ~ =  ~ 6  . 
' Z2 '30 ~ o  ;~1 

rt~-u~~ ; Ste* ___= 
Cl Ol r? bound 

( 1 9 )  

The corresponding generalized relationship may be put into the form 

8cryo; 
- -  - -  " ; ; - - ;  - - ;  Bi; K1; S i e * '  . ( 2 0 )  

8o [ _  6 ' 62 a2 ~ 80 ~0 / 

The r e l a t i o n s h i p  o b t a i n e d  d i f f e r s  f r o m  t h e  s o l u t i o n  o f  t h e  c l a s s i c a l  S t e f a n  p r o b l e m  
i n  t h a t  h e r e  two a d d i t i o n a l  c r i t e r i a  a r e  i n v o l v e d  i n  t h e  n u m b e r  o f  a r g u m e n t s :  K 1 and  8 ' / 8  0 . 
Their characteristic feature is that neither one of them includes parametric values of time 
or extension. But this means that their appearance does not prevent our obtaining self- 
similar solutions of corresponding degenerate problems [7-9]. 

The simplest self-similar problem in the classical case corresponds to the Lame- 
Clapeyron approximations [6] for a semibounded body. Its natural generalization may be pre- 
sented in the form 
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8ff 021~ ~Ar bound (~ __ 1],')~--I 0__~ ; ( 2 1 )  
8X 2 Cx9 ~ OT 

t$ = ~cr~yO fo r  X > ~; ( 22 ) 

1~ = 0 f o r  X ----- O; ( 2 3 )  

0~ ----- 0 for X---">" oo; (34) 
Ox 

I~ = l~cry O for I: = 0; (25) 

% 0@ d$ ~ Ocryo for x ~, (26) 
I ~ X  : r Y f r e e  O-~- ; = 

where v = T - Twall. Just as in the classical case, we consider boundary conditions of the 
first kind, and we assume the temperature of the nonfrozen zone to be constant and equal 
to the initial cryoscopic temperature. The system of equations of the scaling relationships 
becomes simpler in comparison with relations (13)-(18) and can be rewritten in the form 

~ ,  ~,,, [3Arbound~; if' ~cryo; ^ ~ ,  l ,  
- -  a~ - -  ~ ,  = = /~1 [ - ~  = r%' r e ~ - -  " f e _ _  ( 2 7 )  T ,  / .  G191T, 

There are five equations of scaling relations in the three transformed variables. But if 
from these relations we eliminate those which lead to the appearance of criteria not involving 
~, and T,, there then remains only one equation of constraint between the characteristic 
scales s and z,. It is known [7] that in this case the problem has a self-similar (similar) 
solution 

f ) . . . .  ; K~; Ste* . ( 2 8 )  
t~eryo \ x 2 ' O cryo 

If, following tradition [6], we introduce the variable 

~+ = Y ~ ( a l T )  -- 1/]/F%r ( 2 9 )  

t h e n  t h e  f u n d a m e n t a l  e q u a t i o n  o f  t h e  p r o b l e m  i n  t h e  p a r t i a l  d e r i v a t i v e s  o f  Eq. ( 2 1 )  t u r n s  
o u t  t o  be e q u i v a l e n t  t o  t h e  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  

1 ~ " ~ ' '  
(30) 

[ J cryo 
The boundary value problem corresponding to Eq. (30) can be solved numerically. But if we 
restrict ourselves to a linear approximation for the amount of moisture, putting S = i in 
expression (2), we can then obtain a solution in analytic form. We have 

if,, , 1 ~  ,~' +-~--~-=+~+ ---- O; (31)  

~ + =  I for ~ + > ~ + ;  ( 3 2 )  

0'+ • 0 for ~+ : 0; (33) 

@$=--~+ ; ~+= 1 for ~+=~+, (34) 
2Ste* 

where K I = 1 + Arbound/(Clpl). It follows directly from this [6] that 

O+ = err ~+ erf ~+ (35) 
2 2 '  

w h e r e  t h e  q u a n t i t y  ~+ i s  d e t e r m i n e d  f r o m  t h e  r e l a t i o n  

exp ( - -  ~$/4) = ~_+ ] / ~  ( 3 6 )  
err  ~+/2 2Ste* 

We can  make s o l u t i o n  ( 3 5 ) ,  ( 3 6 )  c o m p l e t e l y  i d e n t i c a l  t o  t h a t  o f  t h e  c l a s s i c a l  c a s e  [ 6 ] .  
To do this it is sufficient to introduce the concept of volumetric heat capacity of the fro- 
zen material 
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Ceff ~ glpl _~ Arbound. (37) 

In addition, a fallout from the equations of problem (31)-(34) is the criterion K 2 since, 
by the same token, the two scaling relations equations 

~ , Ar bound ~ ,  
8 ,  __ al, -- - -  (38)  
"g, 12 CIDIT , 

may be replaced by the single equation 

I l~ =%}*%ff *' (39)  

Of course, all these considerations remain valid even for the more complete formulation of 
the self-similar generalized Stefan problem for a semibounded body, a classical analog for 
which was considered in [6]. 

A solution of the non-self-similar problem (20) also simplifies somewhat if we limit 
ourselves to a linear approximation and introduce an effective thermal heat capacity of the 
material. In this case the criteria K I and 0'/~ 0 drop out and expression (20) takes on the 
form 

x ~IT 2 h Cefl ~} cryo 56 _~f~ 0 8+ 
---- "-g-" "" --; ; - -  ; ; / "  (40)  [ .O' Cif62' ~2 C~)Z 1~0 ~1 r~freg 

It is necessary to note that this type of representation has meaning only for the stages 
of proper freezing and terminal freezing. As for the period of preliminary cooling of an 
object, it is here that one applies the ordinary criterial relation 

t~+=f(  x .  aG. ~z6) (41) 
6 '  6 ~ '  )~2 ' 

in which for the parameters one takes the values corresponding to the frozen state. 

The main advantage of relations of the type (40) is that, at the expense of a change 
of reference scale ~,, it becomes possible to use well-known results from the theory of heat 
conduction. For the initial and final stages this solution of the problem relating to the 
temperature field of a homogeneous body tends toward equilibrium, where in the second case 
use of the concept of an effective volumetric heat capacity is mandatory. This method makes 
it possible to apply results of numerical solutions of the classical Stefan problem for the 
stage of proper freezing. Essentially, this portion of the parametric criteria is involved 
only in the limiting inequalities and, therefore, cannot turn out to have an influence on 
the specific form of a function at this or another stage of a process. In particular, this 
allows us, on the basis of known solutions, to determine the instant that the regular re- 
gime of cooling commences, the degeneration of a particular criterion, and similar items. 
The value of solutions (including analytic solutions), valid for individual periods of a 
process, diminishes somewhat as a result of the fact that each preceding stage yields, as 
initial conditions for thesucceeding stage, a rather involved expression for the temperature 
distribution. Nevertheless, use of solutions of this kind can prove to be very useful. 

The application of numerical methods to obtain the most complete relation of the type 
(40) involves no special difficulties. The situation is somewhat more complex with a gener- 
alization of the experimental data. Representation of experimental data in generalized form 
on the basis of a Stefan model makes it possible to compare quantitative characteristics 
of miscellaneous processes (for example, sublimational drying and freezing). However, not 
infrequently, in this connection, specific simplifying prerequisites are applied, appropri- 
ateness for which must be proven in each individual case. 

A whole series of solutions has been obtained on the basis of the so-called quasi-st a - 
tionary approximation. It is assumed that in the equation of heat conduction the derivative 
of the temperature with respect to the time can be neglected if the heat of transition is 
large in comparison with the heat accumulated by the material, i.e., 

and, more exactJy, 

r~c16T, (42)  

r? >> qp16T, (43) 
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where ~T is a characteristic temperature difference. For the generalized Stefan problem 
condition (43) is obviously insufficient. Here the factor accompanying the derivative with 
respect to the time is the quantity Cef f' ~ czp I + Arbound; therefore, discarding the cor- 
responding term in the Fourier equation is only possible providing the influence of the 
bound moisture is negligibly weak. In other words, in this case the classical model of 
Stefan must be considered, but its generalized modification and quas~stationary approxima- 
tion in connection with a strong formulation of the problem are generally incompatible. 

Of course, this does not mean that it is impossible to take into account the effect 
of the remaining moisture in the framework of some approximate quasi-stationary model. Such 
a model can be constructed, for example, on the basis of corresponding balance relationships. 
However, its consideration would take us beyond the bounds of the present paper. 

NOTATION 

a , thermal diffusivity; c, heat capacity; QV, local component of volume density of ther- 
mal flow; r, heat of phase transition; rbound, heat of phase transition of bound moisture; 
T, temperature; Tcry o, cryoscopic temperature; To, initial temperature; Tm, temperature of 
surrounding medium; Twall, wall temperature; x, coordinate; ~, heat transfer coefficient; 
7, total volume moisture content; 7free and 7bound, total content of free and bound moisture, 
respectively; 6, plate thickness; ~, temperature difference; X, thermal conductivity; 6, 
coordinate of moving "front"i p, density; T, time; Bi ~ ~6/X, Blot number; Fo ~ aT~62, 
Fourier number; Ste* ~ Czpz6T/rTfree and Ste** ~ Ceff'6T/Tfree, Stefan number modifications. 
Indices: *, reference scales of corresponding quantities; +, dimensionless quantities; 1 
and 2, parameters of frozen and nonfrozen zones, respectively. 
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